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A highly enantioselective (S)-diphenylpyrrolinol triethylsilyl

ether promoted tandem oxa-Michael–aldol reaction of a,b-

unsaturated aldehydes with salicylaldehydes has been

developed; the method affords one-pot access to chiral and

synthetically useful chromenes in high yields and high

enantioselectivities from readily available compounds.

Functionalized chiral chromene skeleton is found in a myriad of

medicinally important compounds that have a broad and interest-

ing range of biological activities.1,2 Accordingly, a number of

synthetic strategies have been reported for the construction of this

‘‘privileged’’ structural motif.3 Although asymmetric methods

would furnish enantiomerically enriched chromenes, their develop-

ment has proven to be a synthetic challenging task. To date,

approaches to chiral chromenes involving ring-closing metathe-

sis2e,4 and Pt-catalyzed cyclization5 of chiral precursors and

enzyme-catalyzed kinetic resolution6 have been described. An

enantioselective procedure, based on a chiral metal–ligand com-

plex, has been recently reported by Malinakova and co-workers7

for generation of this chiral scaffold. However, it is noted that a

stoichiometric amount of the complex is used. In this communica-

tion, we wish to report a new one-pot, enantioselective organoca-

talytic domino oxa-Michael–aldol reaction for the facile

preparation of chiral chromenes. The process takes place in high

yields (up to 98%) and with good to excellent levels of enantio-

selectivities (up to .99% ee). Importantly, this approach allows for

the construction of complex benzopyran structures starting with

simple a,b-unsaturated aldehydes and salicylaldehydes.

By taking advantage of the capability of chiral pyrrolidine

derivatives to participate in the reversible formation of enamine

and iminium intermediates, Barbas, Yamamoto, List, MacMillan,

Jørgenson, and Enders have independently developed novel types

of organocatalyzed cascade reactions.8,9 Michael addition initiated

cascade Michael–aldol processes serve as powerful methods for the

generation of complex structures. We envisioned that an ‘‘S’’ or

‘‘O’’ could serve as a Michael donor for initiating the process

(Scheme 1). Recently, we have demonstrated that 2-mercaptoben-

zaldehydes can participate in the tandem reactions with attaining

high enantioselectivity (85–95% ee).10–12 However, the develop-

ment of ‘‘O’’ invoked Michael–aldol process has created a

formidable challenge since the oxygen in phenol is a much weaker

nucleophile than that of the sulfur of thiophenol.10,13 Generally, a

base is used to activate the Michael donor phenol group 2 and

these methods are non-asymmetric.10 The strategy we present here

is the utilization of a chiral organocatalyst as a promoter for

activation of the Michael acceptor 1 in a highly enantioselective

controlled manner (Scheme 1).

A model reaction between trans-cinnamaldehyde 1a and

salicylaldehyde 2a in toluene at r.t. under the same reaction

conditions used for the tandem thio-Michael–aldol reaction11 in

the presence of organocatalyst I was evaluated for the oxa-

Michael–aldol process (Fig. 1 and Table 1). It was found that,

surprisingly, no reaction occurred even using 30 mol% catalyst

(Table 1, entry 1). The result prompted us to survey (S)-

diphenylpyrrolinol TMS ether II for the process (Fig. 1).14–16 To

our delight, the reaction proceeded with achieving a good yield

(70%), but a moderate ee (52%) (entry 2). After extensive

optimization reaction conditions including screening solvents17

and reaction temperature, we found that using Cl(CH2)2Cl as a

solvent provided the highest enantioselectivity (80% ee, entry 3).

Lowering the reaction temperature to 0 uC resulted in an improved

ee (89%) but the time required for completion was significantly

lengthened (60 h) and the yield was decreased as well (entry 4).

Switching the TMS silyl ether in catalyst II to the TES in III (entry

5) and TBS in IV (entry 6) showed that III was a superior catalyst

(87% yield and 88% ee, entry 5).
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Scheme 1 Domino organocatalyzed enantioselective Michael–aldol

reactions.

Fig. 1 Screened organocatalysts.
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Having established optimal conditions for reaction of trans-

cinnamaldehyde 1a and salicylaldehyde 2a to form the chromene

3a in ClCH2CH2Cl promoted by catalyst III, we next probed the

scope of the domino oxa-Michael–aldol process by using a variety

of a,b-unsaturated aldehydes 1 and salicylaldehydes 2. As the data

in Table 2 show, the reactions proceeded in respectively high yields

(53–98%) and with good to excellent levels of enantioselectivities

(75–99% ee) (Table 2). The process appeared to have a broad

scope, but efficiencies and ees varied with the electronic and steric

nature of the a,b-unsaturated aldehydes 1 and salicylaldehydes 2.

a,b-Unsaturated aldehydes 1 bearing electron-withdrawing groups,

such as nitro group, generally afforded products in higher yields

(82–98%) and higher ee values (86–99%, entries 2–8) than those

not possessing electron withdrawing groups. Relatively lower ees

were observed for reactions of a,b-unsaturated aromatic aldehydes

1 that bear neutral (entries 1 and 9) or electron-donating (entry 10)

substituents. Also, the results showed that steric hindrance

retarded the reactions but enhanced enantioselectivities (entry 8).

The III-catalyzed processes also took place with less reactive alkyl-

substituted a,b-unsaturated aldehydes (entries 11 and 12), albeit

with lower yields and enantioselectivities. Significant structural

variation in the salicylaldehydes 2 was tolerated in the process.

Aromatic rings, bearing electron neutral (entries 1–2), withdrawing

(entries 4, 8, 10 and 11) and donating (entries 3, 5–7, 9 and 12)

groups could undergo the III-promoted cascade process efficiently.

In summary, we have uncovered a one-pot organocatalyzed

domino oxa-Michael–aldol reaction that transforms readily

available a,b-unsaturated aldehydes and 2-salicylaldehydes to

synthetically and biologically useful chiral chromenes in high

enantiomeric purities. Investigations of the full scope of the

cascade reaction, and its application to the synthesis of biologically

interesting compounds are underway and the results will be

reported in due course.
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A. Córdova, W. Notz and C. F. Barbas, III, J. Org. Chem., 2002, 67,
301; (d) D. B. Ramachary, N. S. Chowdari and C. F. Barbas, III,
Angew. Chem., Int. Ed., 2003, 42, 4233; (e) Y. Yamamoto,
N. Momiyama and H. Yamamoto, J. Am. Chem. Soc., 2004, 126,
5962; (f) M. Marigo, T. Schulte, J. Franzen and K. A. Jørgensen, J. Am.
Chem. Soc., 2005, 127, 15710; (g) J. Casas, M. Engqvist, I. Ibrahem,
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